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Outline of this talk

▶ Preliminaries: Surfaces, Homeomorphisms and Homotopies

▶ Dehn Twists

▶ Mapping Class Groups

▶ Connection to Braid Groups
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Surfaces

Definition
A surface is a two-dimensional manifold with or without boundary. Informally, it is a
geometrical shape that resembles a deformed plane.

Example

Boundaries of solid objects in R3, such as a sphere and torus, are the most familiar
examples.

· · · · · · · · ·

Figure: A list of surfaces without boundary.
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Properties of Surfaces

Definition
A compact surface is a surface that is also a closed and bounded set.

Definition
Let S be a surface. The boundary of S is the collection of points on S minus the set
of all interior points of S , i.e. ∂S = S \ int(S). If ∂S ̸= ∅, then S is a surface with
boundary.

· · ·

Figure: A list of surfaces with boundary.
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Properties of Surfaces

▶ An orientable surface allows a consistent definition of “clockwise” and
“counterclockwise.” On the other hand, a surface is non-orientable if and only if
it contains a Möbius band.

▶ The genus g of an orientable surface S is an integer representing the number of
handles, or holes, on S .

Example

The surfaces without boundary are listed in ascending order from genus 0 to genus n.
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Homeomorphisms

Definition
Let S be a surface. A homeomorphism f : S → S is a continuous bijection with a
continuous inverse.

Example

Rotations, reflections and hyperelliptic involutions. Note that the orientation changes
under a reflection. Moreover, a special example of a homeomorphism that cannot be
realized by rigid motions is a Dehn twist.

Example

Using polar coordinates, define the rotation by angle θ as

fθ : S
1 → S1

(1, α) 7→ (1, α+ θ),

where α is any angle.
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Classification of Surfaces

Theorem
Every compact, orientable surface without boundary is homeomorphic to one of the
surfaces below.

· · · · · · · · ·

In other words, compact, orientable surfaces without boundary are homeomorphic if
and only if they share the same genus g .
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Homotopy Between Homeomorphisms

Definition
Let S be an orientable surface and let f : S → S and g : S → S be two
homeomorphisms. We call f and g homotopic if there exists a continuous map
H : S × [0, 1] → S such that H0 = f and H1 = g , where Ht(x) = H(x , t).

Lemma
The identity map idS1 is homotopic to the homeomorphism fθ.

Proof. Consider the map

H : S1 × [0, 1] → S1

(α, 0) 7→ α

(α, 1) 7→ α+ θ.

Then H(α, t) = α+ θt, where H0 = idS1 and H1 = fθ. Thus, idS1 is homotopic to
fθ.
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More on Homotopy

▶ The identity map idS2 is homotopic to the homeomorphism fθ : S
2 → S2.

▶ Homotopy defines an equivalence relation.
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Dehn Twists About an Annulus

Definition
We define a Dehn twist on A as follows:

TA : A −→ A

(r , θ) 7−→ (r , θ − 2πr),

where the boundary of A, denoted ∂A, is fixed pointwise.

TA

Figure: A Dehn twist on an annulus A.
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Dehn Twist About Simple Closed Curves

Tα

Figure: A Dehn twist about the red simple closed curve α.

We can consider the core of an annulus A, which is the set of points when r = 3
2 .

Every simple closed curve, i.e. loops without self-intersections, on an orientable surface
is the core of some annulus.
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Dehn Twists on a Surface

Definition
Let S be an orientable surface with two simple closed curves α and β. Then a Dehn
twist about α on S is obtained by choosing an annulus A, applying Tα and extending
by the identity, i.e. fixing every point in S \ A. Similarly, a Dehn twist about β on S is
obtained by choosing an annulus A, applying Tβ and extending by the identity.
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Dehn Twists on a Surface

β

α A

S

Tα
Tα(β)

α A

S

Figure: We realize the simple closed curve α as the core of annulus A.

β

A

S

β

A

S

α Tβ(α)

Tβ

Figure: We realize the simple closed curve β as the core of annulus A.
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Remark

In the previous figure, suppose we choose a different annulus A′. Then we will obtain a
curve T ′

α(β) that is homotopic to Tα(β). Moreover, we have that Tα and T ′
α are

homotopic homeomorphisms and, thus, belong to the same mapping class, which we
will define in the next section. In particular, any choice of annulus will yield an element
of the mapping class of Tα.
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Mapping Class Groups

We can consider the set of all homeomorphisms of a surface S , denoted by Homeo(S).
For surfaces with boundary, we only consider the homeomorphisms that fix ∂S
pointwise. The set of all homeomorphisms that are homotopic to identity 1S is
denoted by Homeo0(S).

Lemma
Homeo(S) is a group, with Homeo0(S) as a normal subgroup.

Proof. Clearly, Homeo(S) is a group since function composition is associative, 1S ∈
Homeo(S) and for any f ∈ Homeo(S), its inverse f −1 ∈ Homeo(S), by definition.
Moreover, Homeo0(S) is a subgroup of Homeo(S). Note that 1S ∈ Homeo0(S) since
1S is homotopic to itself. Let f , g ∈ Homeo0(S). We can define the homotopy
H(x , t) = F (G (x , t), t), where F : S × [0, 1] → S is a homotopy such that F0 = 1S
and F1 = f and G : S × [0, 1] → S is a homotopy such that G0 = 1S and G1 = g for
all x ∈ S . Then H0(x) = x and H1(x) = f (g(x)). So it follows that Homeo0(S) is
closed under function composition.
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Mapping Class Groups

Furthermore, let f , g , h ∈ Homeo(S) with f and g homotopic. Then h ◦ f is
homotopic to h ◦ g since we can construct the homotopy K (x , t) = h(H(x , t)) such
that H : S × [0, 1], where H0 = f and H1 = g . Using this fact, we deduce that for any
f ∈ Homeo0(S), also f −1 ∈ Homeo0(S) when we notice that f −1 ◦ f is homotopic to
f −1 ◦ 1S .
Now we show that Homeo0(S) ⊴ Homeo(S). It suffices to show that for any g ∈
Homeo(S) and f ∈ Homeo0(S), we have that gfg−1 ∈ Homeo0(S). Since f ∈
Homeo0(S), there is F : S × [0, 1] → such that F0 = f and F1 = 1S . Note that for any
0 ≤ t ≤ 1,

H(x , t) = g(F (g−1(x), t))

such that H0 = gfg−1 and H1 = 1S is continuous. Therefore, our proof is
complete.
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Remark

Definition
The fundamental group of a topological space X , denoted π1(X , x), is the group of
homotopy classes of x-based loops in X .

Recall that if f is homotopic to g and α is a simple closed curve, then f (α) and g(α)
are homotopic curves. The fundamental group of a surface captures the group
structure of equivalence classes of simple closed curves on a surface.

17/35



Definitions and Elementary Examples

Definition
Let S be an orientable surface. The mapping class group of S , denoted by MCG(S),
is the group of homotopy classes of orientation-preserving homeomorphisms of S , i.e.
MCG(S) = Homeo+(S) / Homeo0(S).

Elements of the mapping class group are called mapping classes.

Example

Recall that idS1 and fθ belong to the same mapping class in MCG(S1). In fact, every
homeomorphism of S1 is homotopic to idS1 , so MCG(S1) is trivial.

Example

Similarly, idS2 and fθ belong to the same mapping class in MCG(S2).
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Definitions and Elementary Examples

Theorem (Alexander Lemma)

The mapping class group of the closed disk D2 is trivial.

Proof. Let f : D2 → D2 be a homeomorphism and assume that f (x) = x for any
x ∈ ∂D2. We want to show that f is homotopic to idD2 . Consider the map
H : D2 × [0, 1] → D2, where

H(x , t) =

{
x , if 1− t ≤ |x | ≤ 1

(1− t)f ( x
1−t ), if 0 ≤ |x | < 1− t

for t ∈ [0, 1). Moreover, define H(x , 1) = idD2 .
Note that H is continuous, and thus, the homotopy between f and idD2 . Therefore,
MCG(D2) = {idD2}.
We call the previous proof, the Alexander trick.

19/35



The Simplest Infinite Order Mapping Class Group

Definition
Let X be a topological space. A path in X is a continuous function f : [0, 1] → X .

Definition
A topological space X is simply-connected if any loop in the space can be
continuously deformed into a single point, i.e. is contractible.

The fundamental group of X at each point in the space measures how far X is from
simply-connectedness. A path-connected space is simply-connected if and only if its
fundamental group is trivial.
A surface S is simply-connected if and only if it is connected with genus 0.

Example

S2 is simply-connected.
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The Simplest Infinite Order Mapping Class Group

Definition
A covering of a space X is another space E together with a map Φ : E → X such that
for any point x ∈ X , there exists an open neighborhood U of x such that Φ−1(U) is a
disjoint union of open sets in E , each of which is mapped homeomorphically onto U.

Definition
A universal cover of X is a covering space that is simply-connected.

If a connected topological space X is simply-connected, then it is its own universal
cover.

Example

S2 is its own universal cover.

Example

R is the universal cover of S1. Note that R is a simply-connected space with the
covering map f : R → S1 such that f (t) = e2πit .
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The Simplest Infinite Order Mapping Class Group

Example

Let A be an annulus. The universal cover of A is the infinite strip Ã ≈ R× [0, 1] since
A is homeomorphic to S1 × [0, 1].

T̃α

π π

Tα

Figure: A preferred lift of a Dehn twist about the red simple closed curve α on A.
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The Simplest Infinite Order Mapping Class Group

Theorem
MCG(A) ≈ Z.
Proof. We construct a map ρ : MCG(A) → Z. Let f ∈ MCG(A) and let φ : A → A be
any homeomorphism representing the mapping class f . Then φ has a preferred lift
φ̃ : Ã → Ã such that φ̃|R×{0} = id |R×{0}. Now let φ̃1 : R → R denote the restriction
φ̃|R×{1}. Note that we can canonically identify φ̃1 with R. Next, we define
ρ(f ) = φ̃1(0). Notice that any homeomorphism homotopic to identity satisfies
φ̃1(0) = 0 since φ̃|R×{1} = id |R×{1}. For any homeomorphism that is not homotopic
to identity, φ̃1(0) = n, where n ∈ Z \ {0}. This follows from the fact that ∂A is fixed
pointwise and we only consider simple closed curves on A, so there cannot be any
intersections of arcs in Ã. Hence, ρ(f ) = φ̃1(0) ∈ Z. Since compositions of
homeomorphisms of A map to compositions of integer translations of R, it is clear that
ρ is a homomorphism.
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The Simplest Infinite Order Mapping Class Group

Further, we find that ker(ρ) is trivial since ∂A is fixed pointwise and any
homeomorphism homotopic to identity satisfies φ̃1(0) = 0. Every homeomorphism
homotopic to identity lifts to arcs homotopic to the ones shown in the previous
example on the left infinite strip. Thus, ρ is injective. And surjectivity follows from the
existence of a homeomorphism for each integer translation.
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The Mapping Class Group of the Torus

Theorem
MCG(T 2) ∼= SL2(Z).
Proof. (Idea) We use a similar method as in the previous theorem. Construct a map
σ : MCG(T 2) → SL2(Z). Note that R2 is the universal cover of T 2. Let Tα be a Dehn
twist about α on T 2, which can clearly be representative of an element of MCG(T 2).
Then Tα has a preferred lift T̃α : R2 → R2.
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The Mapping Class Group of the Torus

β

α A

S

Tα

T̃α

Tα(β)

α A

S

π π

0 1 2 3

1

2

0 1 2 3

1

2

Figure: A preferred lift of a Dehn twist about α on T 2.
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The Mapping Class Group of the Torus

Every simple closed curve on a torus can be homotoped to intersect a point and lifts to
a line through the origin which also passes through another integer point. In fact, the
first such point is (n,m), where gcd(n,m) = 1. Moreover, since there is a bijective
correspondence between nontrivial homotopy classes of oriented simple closed curves
on T 2 and the primitive elements of Z 2, there must exist some matrix A ∈ SL2(Z) such
that A((n,m)) = (1, 0). Notice that T̃α(1, 0) = (1, 0) and T̃α(0, 1) = (1, 1). Thus, T̃α

is a linear, orientation-preserving homeomorphism of R2 preserving Z2. It follows that
T̃α is isomorphic to Tα, where Tα : R2 → R2 is a linear transformation such that
Tα(1, 0) = (1, 0) and Tα(0, 1) = (1, 1). So we can represent a Dehn twist about α as

Tα =

(
1 1
0 1

)
.
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The Mapping Class Group of the Torus

Now let Tβ be a Dehn twist about β, which is another representative of a mapping
class in MCG(T 2). Then we deduce that T̃β is isomorphic to Tβ, where Tβ : R2 → R2

is a linear transformation such that Tβ(1, 0) = (1,−1) and Tβ(0, 1) = (0, 1). Hence,
we can represent a Dehn twist about β as

Tβ =

(
1 0
−1 1

)
.

Recall that SL2(Z) is the set of all 2× 2 matrices with integer entries and determinant
1. Moreover, it is generated by the matrices Tα and Tβ. It turns out that the mapping
class group of the torus is generated by the same matrices.
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Connection to Braid Groups

Definition
The braid group on n strands, denoted Bn, is the group of equivalence classes of
n−braids.

Lemma
B2

∼= Z ≈ MCG(A).

Proof. Note that the braid group B2 has the presentation

B2 = ⟨σ1, · · · , σn−1 |σiσj = σjσi for |i − j | > 1&σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2⟩
= ⟨σ1⟩.

Since B2 is generated by a single element, and thus cyclic, it follows that B2 is
isomorphic to Z.
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Connection to Braid Groups

Now we return to mapping class groups and consider a disk with n punctures Dn.
Then define a map φ : Bn → MCG(Dn). Given a braid, we slide the disk across the
braid to obtain a homeomorphism. We can visualize this as follows: each puncture is
connected by a string to the boundary of the disk and each mapping homomorphism
that permutes two of the punctures can then be seen to be a homotopy of the strings,
i.e. a braid. It turns out that φ is indeed an isomorphism.
By MCG(Dn), we denote the group of mapping classes of homeomorphisms of an
n-punctured disk which fix points on the boundary of the circle pointwise, but not
necessarily the n punctures.

Theorem
The mapping class group of an n−punctured disk MCG(Dn) is isomorphic to the braid
group Bn.
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Connection to Braid Groups

Definition
A configuration space is the set of all possible ordered configurations of n particles

Cn(R2) = {(p1, p2, · · · , pn) ∈ (R2)n | pi ̸= pj for i ̸= j},

where pi ̸= pj is the condition that the particles must not collide. We can also consider
the set of all possible unordered configurations of n particles

UCn(R2) = {{p1, p2, · · · , pn} ⊂ R2 | pi ̸= pj for i ̸= j}.

Note that the left wall and right wall of a configuration space represent points in
UCn(R2). In fact, they can be realized as the same point so we can form the notion of
a loop in the space.

Theorem
The fundamental group of UCn(R2) is isomorphic to the braid group Bn.
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Three Perspectives of Braids

Figure: Three perspectives of B3: traditional braid, configuration space and 3-punctured disk.
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A Word on the Nielsen-Thurston Classification

Using this mapping class group interpretation of braids, each braid can be classified as
periodic, reducible or pseudo-Anosov.

We love mapping class groups!
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Thank you for listening!
Any questions?

Special thanks to the Organizers & Kasia Jankiewicz :)


